Applying the NPAAC Standard to validate a Class 3 in-house IVD

Susie Braniff, Mark Lanigan, Wayne Dimech NRL, Melbourne, Australia

Outline

- TGA requirements
- NPAAC Standard
- Documentation preparation
 - Method establishment
 - Method validation
 - Scientific Validation

TGA requirements

- For laboratories that manufacture class 3 in-house IVDs
 - Annual notification to TGA
 - NATA accreditation
 - Laboratories must meet:
 - AS ISO 15189
 - NPAAC: Requirements for the development and use of inhouse IVDs
 - Maintain suitable documentation to demonstrate compliance with NPAAC standard

NPAAC Standard

NATIONAL PATHOLOGY ACCREDITATION ADVISORY COUNCIL

REQUIREMENTS FOR THE DEVELOPMENT AND USE OF IN-HOUSE IN VITRO DIAGNOSTIC MEDICAL DEVICES (IVDs)

(Third Edition 2014)

PDF Available to Download from:

http://www.health.gov.au/internet/main/publishing.nsf/Content/health-npaacdhaivd.htm

Particular Requirements

- Design
- Production and Contracted Services
- Analytical Performance
- Scientific Validity
- Clinical Performance
- Clinical Utility
- Multivariate Index Analysis
- Monitoring, Analysis and Improvement
- Adverse Event reporting and recalls
- Documentation

Documentation

Standard 11.1

The laboratory must establish documented procedures for the design, development, production, validation and monitoring of an in-house IVD

- Documentation on method establishment
 - Reagents, standards, QC, stability, sample processing & storage, performance characteristics
- Method Validation Report
 - Summary information, method development, risk analysis, sample analysis, references

Case Study

- HTLV-I proviral load PCR
 - To be used for monitoring and management of patients diagnosed with HTLV
 - Class 3 IVD
- Deadline for TGA notification of Class 1-3 in-house IVDs
 - June 30th 2017
 - Laboratory must hold information relating to QMS,
 IVD design & manufacture and performance
 monitoring

In-house IVD review team

- Meets periodically to plan for notification process and review progress
- Staff involved:
 - Scientists
 - Director
 - Staff with relevant expertise as required
 - QC development, evaluations, quality manager

Isolation of PBMC

DNA extraction

RT-PCR

Possible variations Source material

- Whole blood
- DBS

Instrumentation

Controls and Standards

- non-amplification control
- HTLV –I positive control
- HTLV-II positive control
- HTLV standard

Reviving Cells from Liquid Nitrogen

Remove cryovial of cells from liquid nitrogen and immediately thaw rapidly at 37°C in a water bath, until ice just begins to melt.

Before the cells have completely thawed, transfer the contents of the cryovial to a 10 mL Falcon tube containing 10 mL of cold RPMI-1640. Mix gently.

Centrifuge the Falcon tube at 470 x g for 7 Minutes then pour off the supernatant.

Resuspend the cells in 10 mL of cold RPMI-1640 and incubate for 1 hour at 37°C in 5% CO₂.

Centrifuge the Falcon tube at 470 x g for 5 Minutes then pour off the supernatant.

Resuspend the cells in 5 mL of warmed media (select media appropriate to the cell type) and transfer to a 25 cm² tissue culture flask.

Incubate the flask at 37°C in 5% CO₂. Exchange the media when indicated.

Documentation milestones

- 2 months
 - Description of analytical method
 - Procedure and work instructions
 - Specifications of reagents and their sources
 - Quality and identity of standards used
 - Outline of validation experiments
 - Description of stability studies

Documentation milestones

6 months

- Sample processing and storage information
- Calculations applied to results
- Preparation of standard curve and QC material, storage requirements and expiry dating
- Methods of post-implementation monitoring
- In-use criteria for acceptance / rejection of calibration curves and QC results
- Definition of master mix batch, quarantine and lot release

Documentation milestones

- 12 months
 - Measurement uncertainty estimate
 - Summary information on QC samples & method used to determine acceptance criteria
 - Validation report

Scientific validation milestones

- 6 months
 - Establishment of standard curve and QC acceptance criteria
 - Stability of HTLV DNA in sample types
 - whole blood and DBS at relevant temperatures
 - Limit of quantification
 - Specificity in uninfected individuals
 - Robustness

Scientific validation milestones

- 12 month
 - Stability of standard curve and QC material
 - Sensitivity in relevant subtypes
 - Transfer of protocol to alternate instrument

Main challenges so far

- Tracking down old documentation
- Incomplete records
- Making time

Conclusion

- Meeting the NPAAC documentation requirements depends on planning and co-operation
 - Designate an in-house IVD review team
 - Determine milestones
 - Assign person responsible and due date
 - Re-purpose existing documents where possible
 - Create forms to aid record-keeping

